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Classical Trajectories in Rindler Space
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Abstract: The nature of single particle classical phase space trajectories in Rindler
space with non-hermitian P7T-symmetric Hamiltonian have been studied both in
the relativistic as well as in the non-relativistic scenarios. It has been shown that in
the relativistic scenario, both positional coordinates and the corresponding canon-
ical momenta are real in nature and diverges with time. Whereas the phase space
trajectories are a set of hyperbolas in Rindler space. On the other hand in the non-
relativistic approximation the spatial coordinates are complex in nature, whereas
the corresponding canonical momenta of the particle are purely imaginary. In this
case the phase space trajectories are quite simple in nature. But the spatial coor-
dinates are restricted in the negative region only.
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1. Introduction

Exactly like the Lorentz transformations of space time coordinates in the in-
ertial frame [1,2], the Rindler coordinate transformations are for the uniformly
accelerated frame of reference with respect to some inertial one [3-9]. From the
references [3-9], it can very easily be shown that the Rindler coordinate transfor-

mations are given by
2 '
ct = (C —i—z/) sinh (at> and
a c

e (2 ) (). o

Hence it is a matter of simple algebra to prove that the inverse transformations
are given by

2 2
ct':c—ln(xi_zt) and m':(zz—(ct)2)1/2—%. (2)

Here « indicates the uniform acceleration of the frame. Hence it can very easily
be shown from Egs. (1) and (2) that the square of the four-line element changes
from

ds? = d(ct)2 —dz® — dy® — d2* to

N 2
ds® = (1 + 02_22:> d(ct')2 —dz'? - dylz - dzI27 3)
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where the former line element is in the Minkowski space.
Hence the metric in the Rindler space can be written as

2
g"" = diag <(1 + %) ,—1, —1,—1> , (4)
whereas in the Minkowski space-time we have the usual form
g‘“’ = dla'g(+15 _17 _15 _1) (5)

It is therefore quite obvious that the Rindler space is also flat. The only differ-
ence from the Minkowski space is that the frame of the observer is moving with
uniform acceleration. It has been noticed from the literature survey, that the prin-
ciple of equivalence plays an important role in obtaining the Rindler coordinates
in the uniformly accelerated frame of reference. According to this principle, an
accelerated frame in absence of gravity is equivalent to a frame at rest in presence
of a gravity. Therefore in the present scenario, a may be treated to be the strength
of constant gravitational field for a frame at rest.

Now from the relativistic dynamics of special theory of relativity [1], the action

integral is given by
b b
S = —agc/ dsE/ Ldt, (6)
a a

where ap = —mgc [1] and mg is the rest mass of the particle and c is the speed of
light in vacuum.
The Lagrangian of the particle may be written as

9 az\2  v2]Y?

where v is the three velocity vector. Hence the three momentum of the particle is
given by

0L

P= Ea

or (8)

moVv
1/2°
[(1+28)" - 5]

Then from the definition, the Hamiltonian of the particle may be written as

(9)

P=

H=pv-L or (10)

) oz p2 1/2
H = moc (1+C—2) 14 . (11)

2.2
mqC

Hence it can very easily be shown that in the non-relativistic approximation,
the Hamiltonian is given by

2
— ar p 2
H—<1+C2><2m0+moc>. (11a)



In the classical level, the quantities H, z and p are treated as dynamical vari-
ables. Further, it can very easily be verified that in the quantum mechanical sce-
nario where these quantities are considered to be operators, the Hamiltonian H is
not hermitian. However the energy eigen spectrum for the Schrédinger equation
has been observed to be real [10]. This is found to be solely because of the fact that
H is PT-invariant. Now it is well know that PzP~! = —z, PpP~! = —p, whereas
TpT ! = —p and PaP~! = —a but TaT ! = a. Therefore, it is a matter of simple
algebra to show that PT H (PT)~' = HPT = H. As has been shown by several
authors [11] that if H is PT-invariant, then the energy eigen values will be real.
Here P and T are respectively the parity and the time reversal operators. Further
if the Hamiltonian is PT symmetric, then H and PT should have common eigen
states. In [10] we have noticed that the solution of the Schrédinger equation is ob-
tained in terms of the variable u = 1 + ax/c?, which is PT-symmetric. Hence any
function, e.g., Whittaker function M, ,(u) or Associated Laguerre function L, (u),
the solution of the Schrodinger equation are PT-symmetric. These polynomials are
also the eigen functions of the operator PT.

Of course with the replacement of hermiticity of the Hamiltonian with the PT-
symmetry, we have not discarded the important quantum mechanical key features
of the system described by this Hamiltonian and also kept the canonical quantiza-
tion rule invariant, i.e., T9T~' = —i. This point was also discussed in an elaborate
manner in reference [11] and in some of the references cited there.

In this article we have investigated the time evolution for both the space and the
momentum coordinates of the particle moving in Rindler space. We have consid-
ered both the relativistic and the non-relativistic form of the Rindler Hamiltonian
(Egs. (11) and (11a) respectively). Hence we shall also obtain the classical phase
space trajectories for the particle in the Rindler space. We have noticed that in
the relativistic scenario, both the spatial and the momentum coordinates are real
in nature and diverge as ¢t — oo. For both the variables the time dependencies are
extremely simple. Hence we have obtained classical trajectories p(z) by eliminating
the time dependent part.

However, in the non-relativistic approximation, the spatial coordinates are
quite complex in nature, whereas the momentum coordinates are purely imaginary.
Since the mathematical form of the phase space trajectories are quite complicated,
we have obtained p(z) numerically in the non-relativistic scenario.

In the first part of this article, we have considered the relativistic picture and
obtained the phase space trajectories, whereas in the second part, the classical
phase space structure is obtained for non-relativistic case. To the best of our
knowledge such studies have not been done before.

2. Relativistic Picture
The classical Hamilton’s equation of motion for the particle is given by [12]
¢ =[H,alps and p=[H,plpz (12)
where [H, f]p,= is the Poisson bracket and is defined by [12]

_0f09 _09f9yg
[f, g]p,z = dp dx Oz dp’ (13)

Rindler space
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Fig. 1 Phase space trajectories for the relativistic scenario with the scaling parameters equal
to unity

In this case f = z or p. In Eq. (12) the dots indicate the derivative with respect
to time. Now using the relativistic version of Rindler Hamiltonian from Eq. (11),
the explicit form of the equations of motion are given by

2
p— ary = pe .22 2 4\1/2
m_(1+02>(p202+mgc4)1/2 and p= C(pc + mge . (14)

The parametric form of expressions for z and p represent the time evolution
of spatial coordinate and the corresponding canonical momentum. The analyti-
cal expressions for time evolution for both the quantities can be obtained after
integrating these coupled equations and are given by

2
z = CE[CO cosh(wt —¢) —1] and p = —moc sinh(wt — ¢), (15)

where Cp and ¢ are the integration constants, which are real in nature and w = a/c
is the frequency defined for some kind of quanta in [10]. Hence eliminating the time
coordinate, we can write

az\? 1 p?
(1 + 0—2) =L (16)

This is the mathematical form of the set of classical trajectories of the particle
in the phase space. Or in other wards, these set of hyperbolas are the classical tra-
jectories of the particle in the Rindler space. This is consistent with the hyperbolic
motion of the particle in a uniformly accelerated frame. These set of hyperbolic
equations can also be written as

2202 (20 oW
p° = mgc (02 )(1—|— 26). (17)

It is quite obvious from the parametric form of the variation of z and p with
time that both the quantities are unbound. This is also reflected from the nature
of phase space trajectories as shown in Fig. 1 for the scaled z and p. The scaling



factors are a/c? for z and (moc)~! for p. For the sake of illustration, we have
chosen the arbitrary constant Co = 1.

In this figure we have also taken both the scaling factors identically equal to
unity. Then obviously Eq. (16) reduces to

(z+1)2—p2:1.

We shall get the other set of trajectories by choosing different values for the
scaling factors. It is obvious that in this case the centre of the hyperbola is at
(—1,0). Therefore with the increase of o, the centre — (0, 0). Further the vertices
for this particular hyperbolic curve are at (0,0) and (—2,0). The second one is in
scaled form. Therefore for the gravitational field a large enough, both the vertices
coincide at the centre (0,0). It is also obvious that for very large values of «, these
two curves touch each other at (0,0). We have therefore noticed that the phase
space trajectories are unbound and consistent with the motion of the particle in
Rindler space.

3. Non-Relativistic Picture

We next consider the non-relativistic form of Rindler Hamiltonian given by Eq.
(11a). Now following Eq. (12), the equations of motion for the particle in Rindler
space in the non-relativistic approximation are given by

2
P = TN P = 2 (P 2
T = (1+ c2) . and p =2 <2m0 -+ moc > . (18)
On integrating the second one we have
1/2
p— 2 moccot (“%J”P) — ipy. (19)

The particle momentum is therefore purely imaginary in nature with its real
part pr = 0. Here ¢ is a real constant phase. Next evaluating the first integral
analytically, we have

oo e [ s (2= )))]
+ 15 [sin {m (sin2 (21/2“’#»” =zp + iz (20)

The spatial part is therefore complex in nature, where the real part

cum £ 1 on (st (222=0)) )] -

and the corresponding imaginary part is given by

xr = 5 [sin {m <sin2 <2l/2“+_¢>> }] . (22)

Rindler space



Mitra, Das & Chakrabarty

0.0 q

-2.0 L e e I M N e S L
0.0 5.0 10.0 15.0 20.0
Time (Scaled)

Fig. 2 Variation of scaled zg with scaled time
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Fig. 3 Variation of scaled 1 with scaled time

Here again eliminating the time part, we have the mathematical form of phase
space trajectories for the imaginary parts only

[1— exp {sin~" (22/)}]"/
exp { % sin—! (%x;) }

which gives the phase space trajectories of the particle in the Rindler space in
non-relativistic scenario. It should be noted here that since the real part of the
particle momentum is zero, we have considered the imaginary parts only. Since py
is real, therefore | wzy/c|< 1, i.e., can not have all possible values.

In Fig. 2 we have plotted the scaled zg, i.e. (wrg/c) with scaled time (wt/21/2)
for ¢ = 0. Since the constant phase ¢ is completely arbitrary, for the sake of
illustration we have chosen it to be zero. In this diagram the scaling factors are
also taken to be unity. Now if we consider variation of the scaling factors, the
qualitative nature of the graphs will not change but there will be quantitative
changes.

In Fig. 3 we have plotted the scaled zy, i.e., (wzy/c) with scaled time (wt/21/2)
for ¢ = 0. In this case also same type of changes as has been mentioned for zg
will be observed.

In Fig. 4 we have plotted the scaled py, which is actually (p1/21/ 2moc) with
scaled time (wt/ 21/ 2) for ¢ = 0. In this case also the scaling factors are exactly

pr =2"%moc , (23)
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Fig. 4 Variation of scaled p; with scaled time
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Fig. 5 Phase space trajectories for the non-relativistic scenario with the scaling parameters
equal to unity
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Fig. 6 Temporal variation of z; in physically acceptable domain

equal to one. Further the same kind of variation as mentioned above will be ob-
served for p;y with the change of scaling parameters.

Finally in Fig. 5 the phase space trajectory for scaled z; and scaled py is shown
Since the physically accepted domain for scaled z; is from —1 to 0, we have shown
in Figs. 6 and 7 the plot of scaled z; and scaled p; with scaled time.
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Fig. 7 Temporal variation of p; in physically acceptable domain

4. Conclusion

Finally in conclusion we would like to mention that to the best of our knowledge
this is the first time the phase space trajectories are obtained in Rindler space using
non-hermitian PT-symmetric Hamiltonian.

In the relativistic case the trajectories can be represented by a set of hyperbo-
las. Whereas in the non-relativistic picture, particle momenta are purely imaginary
and the space coordinates are complex in nature. The variation of real and imagi-
nary parts of space coordinates are quite complicated. Further, the phase space is
restricted within the domain of negative z-values. The imaginary part of particle
momentum has been observed to change with time in a discrete manner in this
region.

If we consider the Rindler Hamiltonian in the form

2
_ ary P

H_(1+ 02)2m (24)
then it is a matter of simple algebra to show that

2me

1+ w—: =texp(2m) and p = (25)

wt

Hence redefining 1+wz/c as new z and 2me/(wp) exp(2m) as new 1/p, we have
zp = 1, which gives the phase space trajectories in Rindler space. The trajectories
are rectangular hyperbola.
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